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Nuclear energy gap calculations using realistic and 
del ta-funct ion forces 

M. C. JAIN and Y. R. WAGHMARE 
Department of Physics, Indian Institute of Technology, Kanpur, India 
MS.  receiced 1 s t  October 1969, in revised form 23rd December 1969 

Abstract. Energy gap calculations are made with the realistic Yale-Shakin 
interaction and the standard 8-function interaction. States below the valence 
shell are taken into account. It is found that the results are very close, showing 
that they are practically insensitive to the details of the interaction. The  
cons tan t4  approximation is found to be very well justified. 

1. Introduction 
One of the major problems of nuclear physics has been the precise knowledge of 

the nucleon-nucleon interaction. Considerable interest has been aroused by Brown 
and his collaborators (e.g. Kuo and Brown 1966) in the use of the realistic interactions 
in nuclear structure calculations. Recently there have also been attempts to bypass 
the problem of the potential and to derive the two-body matrix elements directly 
from the phase-shift data (Elliott et al. 1968). It has been found that a number of 
low-energy nuclear properties are not very sensitive to the detailed form of the 
interaction. 

The  purpose of this work is to study two types of interactions for the problem of 
pairing. One is the ‘realistic’ Yale interaction (Lassila et al. 1962), whose matrix 
elements have recently become available through the work of Shakin and his col- 
laborators (1966 a,b), and the other is the standard &function interaction JS(v) ,  
where J is the strength of the force. The Yale potential is a complicated finite-range 
interaction with a hard core, and the Yale-Shakin matrix elements have been derived 
using the separation technique (Moszkowski and Scott 1960), according to which the 
very short-range part of the potential does not contribute to the energy. Pairing, 
however, is known to be a short-range force and the 6 interaction is found to satisfy 
the requirements of a pairing potential (Lane 1964, chap. 1). It will, therefore, be 
interesting to compare the results for the two interactions. Brown and Kuo (1967) 
have also given arguments to show that the ‘bare’ interaction acts as a short-range 
force. 

In  a previous paper (Jain and Waghmare 1969, to be referred to as I) we presented 
our detailed calculations of energy-gap functions and pairing energies for the two 
potentials. It was found that the results are very close. This paper presents the 
results of further calculations. The strength J of the 6 force is derived from the 
odd-even mass difference data and is compared with the corresponding values obtained 
from the matrix elements derived from the Talmi approach (Talmi 1962). 

2. The gap equations 
The energy-gap equation is given by (Lane 1964, chap. 3) 

274 



Nuclear energy gap calculations using realistic and delta-function forces 275 

where ( j }  = (2j+ l)ll2, z: represents the two-body interaction, X is the chemical 
potential and the Ej are the self-consistent energies of the single-particle states j .  For 
the 6 interaction and the oscillator wave functions, we have 

where Inl ,n , l ,  is the radial integral in units of v3I2, v being the oscillator parameter 
mwlfi.  This leads to 

One can obtain the ‘idealized’ constant-A equation on replacing by some 

Equation (l), (2) or (3) is to be solved in conjunction with the ‘number-conservation’ 
eauation 

N = 2 2 (i 2 j +  1 Vj2 

j 

where Vj2  is the occupation probability of the pair state j 

3. Calculations and results 
For the Yale-Shakin interaction, the two-body matrix elements are obtained by 

using the tables of relative matrix elements given by Shakin et al. (1966 b) and the 
expression (18) of their paper (1966 a). These are then substituted in equation (1) 
and the gap equations are solved for A and A. The major problem in solving the gap 
equations is to know the values of cl. These quantities can only be evaluated numeric- 
ally in a self-consistent way. The  procedure is highly painstaking and, therefore, we 
have not undertaken this task in the present calculation. We use the observed single- 
proton and single-neutron excitations tabulated by Sherwood and Waghmare (1965). 
It is found that the results are not very sensitive to the choice of single-particle 
energies. Moreover, the main purpose of this work is to compare the results of the 
two types of potentials, and since the same set of single-particle energies is being used 
for both, the error introduced will be insignificant. 

The  strength J of the 8 force is derived by solving the gap equations for various 
values of J. The  values of J which reproduce the experimental pairing energies are 
selected. The  gap equations were solved for both neutron and proton pairing energies. 
The Jvalues obtained from neutron energy-gap calculations for some of the nuclei are 
presented in table 1. The  values for proton calculations are quite similar. 

The  first successful calculations based on pairing theory were made by Kisslinger 
and Sorensen (1960). In  I we compared the J values derived from the Kisslinger- 
Sorensen parameter G with the J values obtained by us. The  agreement was found 
to be good. Various authors have derived information about the effective two-body 
matrix elements from experimental spectra, following the Talmi approach. If one 
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Table 1. Values of the strength parameter J required to obtain the 
observed neutron-pairing energies using the S interaction (in units of 

MeV fm3) 

J for constant-A J for state-deDendent A 
Isotopes Mass number 

16 
Oxygen 18 

20 

34 
Sulphur 36 

38 

42 
Calcium 44 

46 

60 
62 

Nickel 64 
66 

92 
Zirconium 94 

96 

solution 

197.6 
160.2 
154.0 

221 -7 
237.8 
209.4 

209.1 
212.4 
197.1 

214.3 
229.4 
229.4 
208.0 

242.0 
237.8 
231.1 

solution 

180.0 
180.0 
174-0 

210.0 
230.0 
227.0 

227.0 
232.0 
218.0 

220.0 
228.0 
228.0 
210.0 

249.0 
240.0 
220.0 

Table 2. J values derived from the Talmi matrix elements 

Nuclei 

Oxygen isotopes 
(Federman-Talmi 1965) 

28 < A < 40 
(Glaudemans et al. 1964) 

3 3 S-41Ca 
(Erne 1966) 

Calcium isotopes 
(Federman-Talmi 1966) 

Xckel isotopes 
(Auerbach 1966) 

90zr 

(Talmi-Unna 1960) 

Parametrized J value 
Matrix element value (absolute) (derived) Mean J 

(MeV) (MeV fma) (MeV fm3) 

3.24 266.3 
1.97 199.7 
0.77 184.2 

2.28 397.7 
1,351 193.6 

1.71 311.1 

2.64 355.4 
1 -40 255.2 
1.64 555.4 

1.74 374.9 
1.12 515-9 
0.56 371.8 
0.92 201.3 
0.97 300.3 
0.89 389.5 

0.708 4’71.7 
1.164 371.0 

216.7 

295.7 

311.1 

388.7 

360.6 

421.35 
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Table 3. Occupation probabilities of neutron states in Ni and Zr isotopes 
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Occupation probability (Vjz )  for- 

Yale-Shakin 
interaction 

0.939 
0.628 
0,284 
0.062 
0.020 

0.942 
0.835 
0.44 
0.081 
0.031 
0.003 

0,963 
0.920 
0.650 
0-11 
0,046 
0.004 

0.984 
0.960 
0.86 
0.21 5 
0.06 
0.004 

0.998 
0.988 
0-996 
0.324 
0.024 
0.01 2 
0.001 

0.999 
0.989 
0.997 
0.655 
0.045 
0.01 8 
0.001 

1 .ooo 
1 so00 
1 eo00 
0,994 
0.016 
0.001 
0.000 

6 interaction 6 interaction 
(state-dependent 

solution) 

0,935 
0.607 
0.287 
0.05 
0.026 

0.943 
0.746 
0.472 
0-091 
0.044 
0.011 

0.962 
0.858 
0.658 
0.128 
0.059 
0,013 

0,987 
0.958 
0.888 
0.171 
0.055 
0.008 

0.996 
0.982 
0.984 
0.344 
0.042 
0.01 
0.002 

0,998 
0.989 
0.993 
0.659 
0,071 
0*010 
0.002 

1.000 
0,999 
0.999 
0,981 
0.064 
0.002 
0.000 

(constant 
solution) 

0.940 
0.603 
0,274 
0.049 
0.030 

0.943 
0.736 
0,468 
0-096 
0.056 
0.019 

0.962 
0,847 
0.656 
0,136 
0.072 
0.022 

0.987 
0.954 
0.886 
0.174 
0.066 
0.014 

0.994 
0,985 
0.972 
0,363 
0.052 
0.010 
0.004 

0.996 
0.991 
0.984 
0.664 
0.078 
0.010 
0,004 

1 .ooo 
1 -000 
1.000 
0.993 
0.01 3 
0.001 
0.000 

Experimental 
values 

0.775 
0.1 5 

0.30 
0.05 
0.025 
0.03 

0.62 5 0 - 5  
0.05 
0.05 
0.04 

0-96 e0.10 
0.05 
0.05 
0.06 
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assumes a 8 force, one can easily obtain the -relation 

where I VI is the Talmi parameter [ ((j2)0 + [ ‘z: [ (jl2)0 + ) 1. We have derived the J 
values from some of the Talmi parameters and the results are given in table 2. I t  
can be seen that these J values are consistently higher than our results. This is what 
one would expect, firstly, because the number of single-particle states used in the 
Talmi approach is much smaller than that used by Kisslinger-Sorensen and ourselves. 
This increases the ‘effective’ force. Secondly, these matrix elements have been 
obtained by requiring a detailed fit to nuclear spectra, and it has been observed that 
the matrix elements required to give a detailed fit to nuclear data are higher than the 
Kisslinger-Sorensen matrix elements (e.g. Brown 1967). 

Using the J values given in table 1, we have calculated the occupation prob- 
abilities Viz for the single-particle statesj in Ni and Zr isotopes. These are given in 
table 3 with the corresponding values calculated with the Yale-Shakin interaction. 
Also given for comparison are the experimental results obtained from (d, p) and (d, t) 
reactions (Cohen and Price 1961, Macfarlane et al. 1962). It is seen that the results 
for the Yale-Shakin force and for the 6 force are essentially the same and agree 
reasonably well with the experimental results. These results, with the results of I, 
show clearly that the 6 force closely simulates the Yale-Shakin realistic interaction, 
and that the realistic interaction works very well as a ‘pairing’ force in spite of the 
fact that the very short-range part does not contribute to the energy. 

In  our calculations we have included the states below the ‘valence’ shell. Thus 
the effects of core polarization arising from 2p-2h excitations of the core are taken 
care of. 

Finally, we note that there is no difference between the results of state-dependent 
and constant-A solutions for the 8 force, showing that the ‘idealized’ pairing force 
model, with which the earlier authors had to work because of a lack of knowledge of 
the nature of the force, is very well justified. 

4. Conclusions 
The major conclusion of this work is that the &function interaction closely 

simulates the ‘pairing’ part of a ‘realistic’ finite-range interaction of complicated 
nature. This supports the fact that many of the low-energy properties of nuclei are 
not sensitive to the details of the interaction. We also note that the constant-3 
approximation of the gap equations is very well justified. 
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